

ORIGINAL ARTICLE

"FREQUENCY OF RH-D NEGATIVE & WEAK D IN PAKISTANI POPULATION"

Muhammad Usman¹, *Muhammad Rizwan¹, Nasima Iqbal¹, Nadeem Uddin Shaikh²,
Hassan Osman Mehmood³,

¹Department of Pathology, BMC, Baqai Medical University, Karachi, ²Department of Anatomy, GMMC, Sukkur, Baqai Institute of Hematology, BMU, Karachi.

ABSTRACT

Introduction: The Rh blood group system is one of the most polymorphic and immunogenic blood group systems in humans. The expression of its antigens is complex, among that Rh-D antigen is the most important antigen because of its high immunogenicity. Molecular genetic of RHD gene revealed that weak D antigen is a Rh-D phenotype that possesses less numbers of D antigen epitopes on surface of red cells. These individuals usually labeled RhD -ve by conventional testing but when transfused to RhD -ve person, it can elicit antibody production. Variable incidence of weak D worldwide, lack of awareness, proper data & multi-ethnic population of our country propelled to analyze it.

Material and Methods: A cross-sectional study conducted from August 2012 to August 2014. Around 48,228 healthy blood donors were tested for RhD factor. Commercially available monoclonal anti-D sera were used to detect Rh-D factor status. Individuals found negative with saline anti-D, were further investigated for weak D antigen by using indirect Coomb's technique (IAT).

Results: Among 48,228 healthy blood donors, 44853 (93%) were Rh-D factor positive while 3375 (7%) were Rh-D factor negative. Among these, 3375 Rh-D factor negative individuals 27 (0.8%) were found to be weak D positive.

Conclusion: Although frequency of weak D does not come high among our donors but is still significant enough to advocate testing of weak D in routine for all Rh -ve donors & pregnant women in order to avoid consequences of anti-D allo-immunization which can lead to serious hemato-pathological problem.

Key words: Weak D antigen, Rh-D phenotype, Allo-immunization.

INTRODUCTION:

There are now formerly 38 registered blood group systems having single or very closely located more than one gene on particular locus on different chromosomes¹. These genes can be allelic or homologous (closely-linked) controlling the specificity of these systems by coding different blood group antigens². ABO & Rh system enjoy highest importance among all blood group systems because of their clinical significance in terms of transfusion & transplantation³. Rh blood group highlights more in relation to Hemolytic disease of fetus & newborn⁴ (HDFN).

Rh blood group system comprise of over 50 Antigens. Among these antigens 5 (i.e. C, c, D, E, e) are common while D antigen being most immunogenic gains the scientific priority among them. Genes who control the Rh system antigens i.e. RHD & RHCE are located on the chromosome 1p36.13-p34.3^{5,6}. Variable prevalence of Rh D antigen is reported from different countries; it is being 93.6% in India, 99% China⁷, 85% Caucasians, 92% Blacks⁸ while in our country it is reported to be 92%⁹. The variation in prevalence of RhD -ve can be assessed from above figures which range from 1% to 15% but highest reported is from Saudi Arabia & Morocco

i.e. 29%¹⁰.

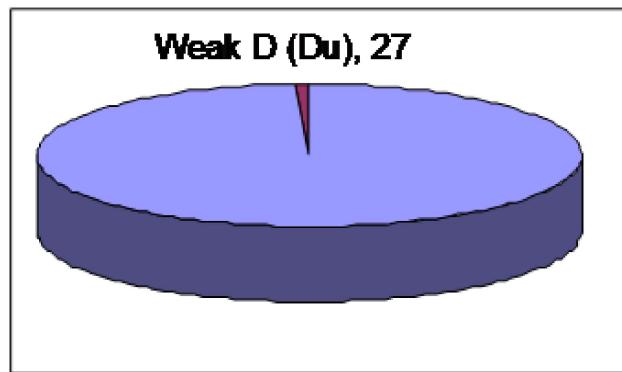
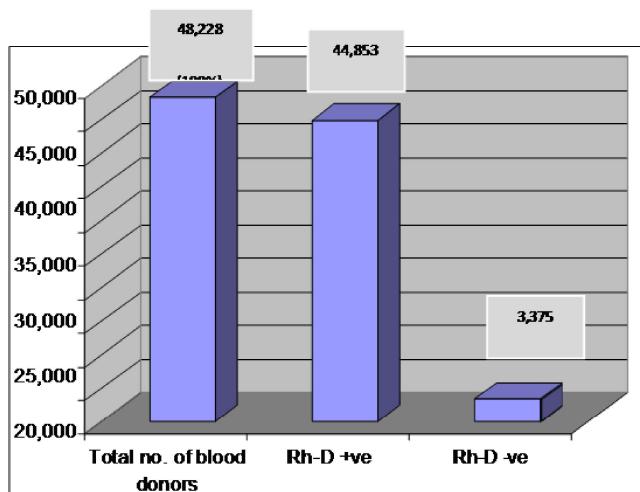
After the discovery of Rh-system antigens, variants of D antigens; mainly weak D & partial D were detected in 1946 by Stratton¹¹. The weak D phenotype (formerly known as Du) is represented by a group of RHD genotypes that codes in their vast majority for altered RhD proteins associated with a reduced RhD expression on the red blood cells surface¹². Approximately 9 D epitopes have been reported in the mosaic of RhD antigen⁵. Weak D antigen is the one with all the epitopes but expressed weakly¹⁰. A molecularly defined weak D type is a variant of the RhD protein with an amino acid substitution in the trans-membranous or intracellular segment and expresses a decreased quantity of D antigen. Another variant "Partial D", on other hand, has decreased number of epitopes and has an amino acid substitution in at least one of the extracellular or RBC membrane surface loops¹³. Approximately 5 – 10% of weak D phenotypes in the United States are estimated to be partial D phenotypes¹⁴.

With advances in medical therapeutic sciences & awareness; blood transfusion has become most common procedure during hospitalization. In USA, over 11 million/year RBC transfusions are given¹⁵. Adding to this fact are the transfusions given to chronic transfusion-dependent patients. According to a report by Lal et al 2018 published in Transfusion journal; Thalassemics constitute 34.7% of all transfusions¹⁶. A study by Romphruk et al 2018; which studied alloantibodies in Thalassemics, concluded that they were more prone to develop Rh antibodies as compared to Kell blood group system¹⁷. Although RhD testing is routine since long but some recent studies have suggested high rates of Rh antibodies¹⁸. This situation aggravates when we consider lack of technical facilities in majority blood banks of our country. Understanding of weak D phenotype is still not widespread in transfusion-community of our country¹⁹. Even a survey conducted by college of American pathologists (CAP) in 2014 gave finding of lack of standard practice for interpreting RhD type in cases of weak D phenotype in USA²⁰.

There is one misconception that individuals with weak D phenotypes can't make anti-D in contrast to partial D because they have low levels of complete D antigens but many detailed studies revealed that testing of weak D is significant¹⁰. Specifically the weak D type 2 contains lowest density of epitopes. Recommendations are formulated since work of Flegel et al 2002 that weak D should be tested as part of routine immune-hematological work up²¹.

The multi-ethnic population of our country, lack of awareness & lack of technical facilities deserves more work on this subject from different parts of country. The current study was designed to determine the frequency of weak D antigen in Pakistani population so that recommendations can be formulated at the district level for considering weak D serology as a routine blood bank procedure.

MATERIAL & METHODS



This multi-center cross-sectional study was performed at the Baqai Institute of Hematology, Fatima Hospital, Baqai Hospital Nazimabad, Husaini Institute of Hematology and Oncology Trust and Muhammadi Blood Bank, Karachi from August 2012- August 2014. Test population was healthy blood donors who were registered after informed written consent. All samples were grouped for ABO and Rh-D factor using commercially available anti-sera. All samples found negative with saline anti D, were further tested for weak D antigen using indirect Coomb's technique. The results were analyzed using SPSS statistical software version 21.

RESULTS:

During this study, 48,228 healthy blood donors were tested for Rh-D factor status. The results are depicted graphically in figure 1 and 2. Among these, 44,853 (93%) were Rh-D factor positive while 3,375 (7%) were Rh-D factor negative. Out of these 3,375 Rh-D factor negative individuals, 27 (0.8%) were determined as weak D positive.

DISCUSSION:

Weak D is a phenotype with either a qualitative or quantitative difference in the RhD moiety resulting in a weakened expressed of D antigen. Depending

upon the ethnic group about 3-25% of human population lacks RhD antigen¹¹. Importance of Weak D antigen surface when person having Rh D -ve phenotype requiring blood transfusion receives blood from donor having Weak D phenotype & typed as RhD -ve this sparkle more when occurs in pregnant women¹³.

Although recommendations for testing Du (currently “Weak D”) was found even in first edition of AABB standards published in 1958²², it declared donors having Weak D as “RhD positive” while recipients having Weak D as “RhD negative” with recommendation of IAT for donors & DAT for recipients, that policy prevailed for around 50 years. The 30th edition of standard of AABB (published in 2016) renders Weak D testing optional for recipients and advocate molecular testing²³

Frequency of weak D antigen is observed **0.8%** in our study. The finding which is quite comparable

with studies from different countries. A study by Dehapriya et al from India reported 0.215% frequency among donors (n = 1,528) same study compared their results with German population whose frequency was 0.44%²⁴. A multicenter study from Kenya reported 2.1% frequency among blood donors with sample size of just 384²⁵. Even back in 2005; study from Toronto, Canada reported findings of 0.96%²⁶ while similar findings (i.e. 0.96%) in a study conducted in Dutch donors²⁷.

Another study from India (Uttarkhand) having large sample size (n = 58,614) concluded frequency of 0.09%²⁸. Frequency of 0.03% being reported from China; a study by Xu Zhang with sample size of 132,479²⁹ another report of China few years back concluded 0.015 & 0.012% in Han population from Shanghai. Talking of Europe, studies from Poland & Denmark concluded 0.2% & 0.3% respectively³⁰. The China having lowest because they have lowest RhD negative percentage.

Till 2017 around 147 weak D types were listed on Rhesus database³¹ which makes it worthy to be tackled at all levels of healthcare. Although molecular tests are the ultimate answer to resolve discrepancy of weak D and D variants but in under developed countries at their rural district level, anti-human gamma globulin test to detect “weak D” has still got its worth especially for donors and women of child bearing age and efficacy of anti-human gamma globulin in detecting weak D antigen is well accepted³². Although the use of different commercial anti D sera are debatable but laboratories should follow guidelines of the particular country for patient and donor typing and select reagents accordingly.

CONCLUSION:

Frequency of Weak D although low but is comparable with worldwide data makes it significant enough to be recommended as routine test in all RhD negative donors & women of child bearing age.

REFERENCES:

1. "Red Cell Immunogenetics and Blood Group Terminology". 2019. from the original on 3rd January 2020. Retrieved 5th March 2020.
2. Mitra R, Mishra N & Rath GP. Blood group systems. Indian J Anaesth. 2014 Sep-Oct; 58(5):524-528.
3. Pisk SV, Vuk T, Iveziae E, Jukiae I, Bingulac-Popoviæ J, Filipæiae I. ABO blood groups and psychiatric disorders: a Croatian study. Blood Transfus. 2019 Jan; 17(1):66-71. Doi: 10.2450/2018.0266-17. Epub 2018 Feb 15. PMID: 29517969; PMCID: PMC6343596.
4. Yahiya A, Miskeen E, Sohail S K, et al. (February 19, 2020) Blood Group Rhesus D-negativity and Awareness toward Importance of Anti-D Immunoglobulin among Pregnant Women in Bisha, Saudi Arabia. Cureus 2020; 12(2): e7044. DOI 10.7759/cureus.7044
5. Johnson ST, Wiler M. The Rh blood group system. In: Harmening DM, Editor. Modern blood banking & transfusion practices. 7th ed. Philadelphia: F.A Davis Company; 2018. pp 149-171.
6. Guzjan g, lilić m, jukie b, milosavie m, mitrovic s. First Results in Genotyping for Blood Donors of the Republic of Srpska with Serological Weak D Antigen. Scr Med 2017;48:61-67 [doi:10.18575/msrs.sm.e.17.09]
7. Gunrajukuppam DK, Vijaya SBK, Rajendran A & Sarella JD. Prevalence of principal Rh blood group antigens in blood donors at blood bank of a tertiary care hospital in southern India. JCRD 2016 May;10(5):EC07-EC10
8. Dean L. Blood Groups and Red Cell Antigens [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2005. [Table], Antigens of the Rh blood group. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK2269/table/ch07Rh.T1/>
9. Jabin F, Waheed U, Ahmed S, Arshad M, Arshad A, Zaheer HA. Red blood cell phenotyping of blood donors in Islamabad, Pakistan. Glob J Transfus Med 2018; 3:26-9.
10. Golassa, L., Tsegaye, A., Erko, B. *et al.* High rhesus (Rh (D)) negative frequency and ethnic-group based ABO blood group distribution in Ethiopia. BMC Res Notes 10, 330 (2017). <https://doi.org/10.1186/s13104-017-2644-3>
11. Kumar H, Mishra DK, Sarkar RS, Jaiprakash M. Difficulties in Immunohematology: The weak D antigen. MJAFI 2005; 61:348-350.
12. Wagner FF, Gassner C, Muller TH, Schonitzer, Schunter F, Flegel WA. Molecular basis of weak D phenotypes. Blood 1999; 93:385-393.
13. Sandler SG, Chen L, Flegel WA. Serological weak D phenotypes: a review and guidance for interpreting the RhD blood type using the RHD genotype. Br J Haematol. 2017;179(1):10-19 [doi:10.1111/bjh.14757]
14. Garratty G. Do we need to be more concerned about weak D antigens? Transfusion. 2005; 45:1547–1551. [PubMed: 16181202]
15. Tomey CA, Hendrickson GE. Transfusion-related red blood cell alloantibodies: induction and consequences. Blood. 2019;133(17):1821-1830
16. Lal, A., Wong, T.E., Andrews, J., Balasa, V.V., Chung, J.H., Forester, C.M., Ikeda, A.K., Keel, S.B., Pagano, M.B., Puthenveetil, G., Shah, S.J., Yu, J.C. and Vichinsky, E.P. (2018), Transfusion practices and complications in thalassemia. Transfusion, 58: 2826-2835. <https://doi.org/10.1111/trf.14875>
17. Romphruk, A.V., Simtong, P., Butryojantho, C., Pimphumee, R., Junta, N., Srichai, S., Komvilaisak, P. and Puapairoj, C. (2019), The prevalence, alloimmunization risk factors, antigenic exposure, and evaluation of antigen-matched red blood cells for thalassemia transfusions: a 10-year experience at a tertiary care hospital. Transfusion, 59: 177-184. <https://doi.org/10.1111/trf.15002>
18. Chou ST, Jackson T, Vege S, Smith-Whitley K, Friedman DF, Westhoff CM. High prevalence of red blood cell alloimmunization in sickle cell disease despite transfusion from Rh-matched minority donors. Blood. 2013; 122(6):1062-1071.

19. Zaheer h, Waheed u. Blood safety reforms system in Pakistan. *Blood Transfus* 2014; 12:452-457. [doi: 10.2450/2014.0253-13]
20. Sandler SG, Flegel WA, Westhoff CM, Denomme GA, Delaney M, Keller MA et al. It's time to phase-in RHD genotyping for patients with a serological weak D phenotype. *Transfusion* 2015 March; 55(3):680-689. Doi: 10.1111/trf.12941
21. Flegel WA, Wagner FF. Molecular Biology of partial D and weak D: Implications for Blood Bank Practice. *Clin Lab.* 2002; 48:53-9. PMid:11833677
22. Scientific Committee of the Joint Blood Council & Standards Committee of the American Association of Blood Banks, 1958).
23. Oley, P. Standards for blood banks and transfusion services. 30. Bethesda, MD: American Association of Blood Banks; 2015.
24. Basu D, Data SS, Montemayor C, Bhattacharya P, Mukherjee K, Flegel WA. ABO, Rhesus and Kell antigens, alleles and haplotypes in west Bengal, India. *Transus Med Hemother* 2018;45:62 – 66
25. Githiomi R, Kuria KM. Prevalence of weak RhD phenotype in the blood donor population of Nairobi regional blood transfusion centre – Kenya. *Africa Sanguine* 2016; 18(2):13–15.
26. Denomme GA, Wagner FF, Fernandez BJ, Wei L, Flegel WA. Partial D, weak D types, and novel RHD alleles among 33,864 multiethnic patients: implications for anti-D alloimmunization and prevention. *Transfusion* 2005;45:1554–1560. [PubMed: 16181204]
27. Stegmann TC, Veldhuisen B, Bijman R, Thurik FF, Bossers B, Cheroutre G, Jonkers R, Ligthart P, de Haas M, Haer-Wigman L, van der Schoot CE. Frequency and characterization of known and novel RHD variant alleles in 37782 Dutch D-negative pregnant women. *Br J. Hematol* 2016;173:469–479. [PubMed: 27018217]
28. Agarwal N, Chandola I, Agarwal A. Prevalence of weak d in northern hilly areas of Uttarakhand, India. *Asian J Transfus Sci* 2013;7(1):90-91
29. Zhang XU, Li G, Zhou Z, Shao C, Huang X, Li L et al. Molecular and computational analysis of 45 samples with a serologic weak d phenotype detected among 132,479 blood donors in northeast China. *J Transl Med* 2019; 17:393 -403.
30. Denomme GA. Prospects for the provision of genotyped blood for transfusion. *Br J. Hematol* 2013; 163:3–9. [PubMed: 23889672]
31. Rh blood group database, {www.rhesusdatabase.info/}
32. Schmidt LC, Castilho L, Vieira OVN et al. Impact of a confirmatory RhD test on the correct serologic typing of blood donors. *Rev Bras Hematol Hemother* 2015; 37(5):302 – 305.