

ORIGINAL ARTICLE

Thaliporphine from *Berberis lycium* Royle

¹Syed Fazal Hussain, ²Lajbar Khan, ¹Shaukat Khalid, ¹Kaneez Fatima and ¹Rana Asif Hussain

¹Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi.

²PCSIR Laboratories, Jamrud Road, Peshawar.

ABSTRACT

Chemical studies on the aerial part of *Berberis lycium* Royle belonging to the family Berberidaceae resulted in the isolation of the aporphine alkaloid 'Thaliporphine', the structure of which was elucidated by using spectroscopic techniques such as ¹H NMR, ¹³C NMR, DEPT-90, DEPT-135 and Mass spectrometry. Although only nine aporphines have been isolated from different *Berberis* species, this is the first report of the isolation of thaliporphine from *Berberis lycium*.

Keywords: *Berberis lycium*, Isoquinoline Alkaloids, Thaliporphine, ¹H, ¹³C and Mass Spectra

1. INTRODUCTION

Berberis is the largest genus of the family Berberidaceae. It is comprised of over 450 species in the world out of which 29 species are found in Pakistan¹. The most abundant and common species found in the northern part of Pakistan at an altitude of over 1100 meters is *Berberis lycium* Royle. Locally the plant is known as 'kashmal' or 'sumlu'. *Berberis* is one plant whose medicinal value has been acknowledged in many countries of the world. *B. lycium* is known to possess antidiabetic, antihyperlipidemic, hepatoprotective, antibacterial, antifungal, anticoccidial, pesticidal, antimutagenic and wound healing properties, supporting its traditional uses². It is an anti-inflammatory agent which is specially used as a remedy for enlargement of liver and spleen³. Decoction of fruit is also used in typhoid and fever⁴. *B. lycium* has shown hypoglycemic activity in streptozotocin-nicotinamide induced Type II diabetic rats by an extra pancreatic mechanism⁵. *B. lycium* significantly helps in lowering the LDL, serum total cholesterol and triglycerides and helps in increasing HDL level⁶. A more recent review on *B. lycium* provides information on medicinal uses of the drug⁷.

Berberis species are rich repositories of isoquinoline alkaloids. About 200 isoquinoline alkaloids of diverse chemical structures have been isolated from various species of *Berberis* throughout the world. *B. lycium* has yielded the protoberberine alkaloids berberine⁸, the bisbenzylisoquinolines berbamine⁸, palmitine⁹ and berbamine¹⁰, the novel seco-bisbenzylisoquinoline alkaloids sindamine, punjabine, gilgitine¹¹, chenabine, jhelumine, and karakoramine¹⁰. Though several aporphine-benzylisoquinoline dimers have been isolated from different *Berberis* species, occurrence of aporphines is rare in *Berberis*. Only nine aporphine alkaloids have been isolated from *Berberis* species namely, amurenine, corydine, glaucine, isoboldine, isocorydine, isocorydine-N-oxide, magnoflorine, thaliporphine(thalicmidine) and thalicmidine-N-oxide from 25 different species namely *B. amurensis*¹¹, *B. actinacantha*¹², *B. turcberinica*¹³, *B. densiflora*¹⁴, *B. integerrima*¹⁵, *B. heteropoda*¹⁶, *B. turcomanica*¹⁷, *B. oblongata*¹⁸, *B. iliensis*¹⁹, *B. nummalaria*²⁰, *B. mingensis*²¹, *B. thunbergii*²², *B. morrisonensis*²³, *B. julianae*²⁴, *B. microphylla*²⁵, *B. heterobotrys*²⁶, *B. crataegina*²⁷, *B. brandisiana*²⁸, *B. interbrinine* and *B. interbrimine*²⁹, *B.*

*polymorpha*³⁰, *B. cretica*³¹, *B. koreana*³², *B. kawakamii*³³, *B. tschonoskyana* and *B. vulgaris*³⁴, *B. montana*³.

The most common aporphine in *Berberis* is magnoflorine which has been reported from 16 different species. Thaliporphine, the synonym of which is thalicmidine, has been reported only from six *Berberis* species, *B. densiflora*, *B. heterobotrys*, *B. heteropoda*, *B. integerrima*, *B. oblonga* and *B. turcomanica*. We report here the isolation and structure elucidation of thaliporphine from the aerial part of *Berberis lycium* Royle.

Aporphines have been shown to possess antioxidant to antiproliferative properties³⁵ and are also potent vasoconstrictor³⁶. In another study thaliporphine possessing antioxidant and alpha-1 adrenoceptor antagonistic activity improves acute lung injury after traumatic brain injury³⁷. It has also been observed that pretreatment with thaliporphine before ischemia affords cardioprotective effects against reperfusion injury via antioxidant activity³⁸.

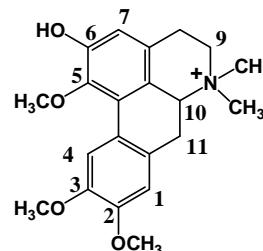
2. EXPERIMENTAL

2.1. General Methods

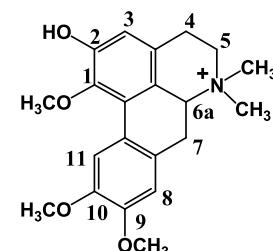
The ¹H and ¹³C NMR spectra were recorded in Bruker 400 MHz instrument in acetone-d⁶ while the mass spectrum was obtained on a JEOL instrument.

2.2. Plant Material

Aerial parts of *Berberis lycium* were collected from the Murree hills in June 2014, and deposited at PCSIR Peshawar Herbarium (Voucher specimen No. PES-9015).

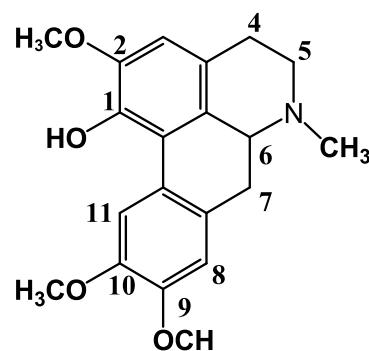

2.3. Extraction and Isolation

The air-dried leaves and stems (19 kg) were powdered and extracted with ethanol. The removal of solvent, extraction of base with 5% hydrochloric acid and making it alkaline with ammonium hydroxide yielded the basic fraction C(105 g) which was passed through a column of silica gel and eluted with 2% methanol in dichloromethylene. A total of 147 fractions were obtained by combining several fractions and designated as sub fraction C(A). It


was packed in a small silica column and eluted with 5% acetone in hexane with ten drops of diethylamine (DEA) and the polarity was increased up to 10% acetone in hexane and DEA. By using preparative TLC on silica gel GF-250 on the fraction 71 obtained from the column by eluting with a solvent system (hexane and acetone, 8:2, v/v + 10 drops of DEA), a pure alkaloid was isolated which was identified as thaliporphine.

3. RESULTS AND DISCUSSION

Thaliporphine was originally isolated from *Fagara tinguasssoiba* as quaternary salt and was assigned the structure, 6-hydroxy-2,3,5-trimethoxy-N,N-dimethylaporphinium salt (according to old system of numbering for aporphines)³⁹.


Old system of numbering:
6-hydroxy-2,3,5-trimethoxy-N,N-dimethylaporphinium ion

New system of numbering:
2-Hydroxy-2,9,10-trimethoxy-N,N-dimethylaporphinium ion

Figure 1. Old and New systems of numbering of Aporphines

The structure of quaternary salt of *Fagara tinguasssoiba* was revised by synthesizing the alkaloid and the new structure was assigned as 1-hydroxy-2,9,10-trimethoxy-aporphine with the new system of numbering as follows⁴⁰.

Interestingly, the new synthetic compound 1-hydroxy-2,9,10-trimethoxyaporphine corresponded to the aporphine alkaloid thaliporphine (thalicmidine) isolated from *Thalictrum fendleri*⁴¹. The alkaloid isolated from the ethanolic extract of *B. lycium* by using preparative thin-layer chromatography (TLC) as described above was identified as thaliporphine (thalicmidine) by NMR and mass spectrometry. The comparative spectral data of ¹H and ¹³C NMR are as follows:

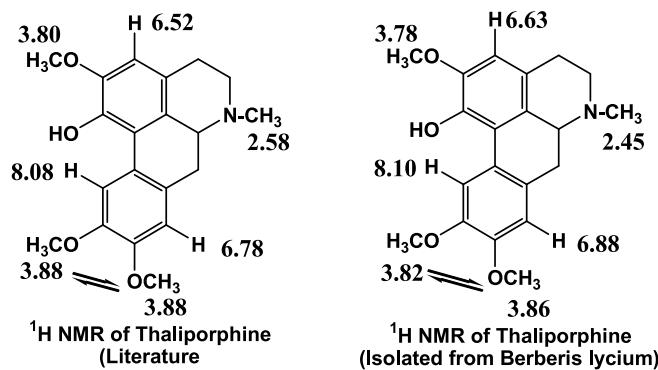


Figure 2: ¹H NMR Spectrum of Thaliporphine

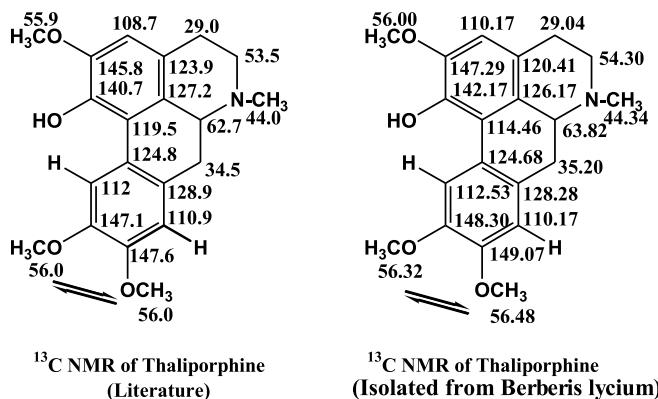


Figure 3. ¹³C NMR Spectrum of Thaliporphine

The spectral data of the alkaloid was in conformity with that reported in the literature for thaliporphine (thalicmidine)⁴¹. This is the first report of the isolation of thaliporphine from *B. lycium*.

Conflict of Interest

The authors indicate that there is no conflict of interest regarding the contents in the paper.

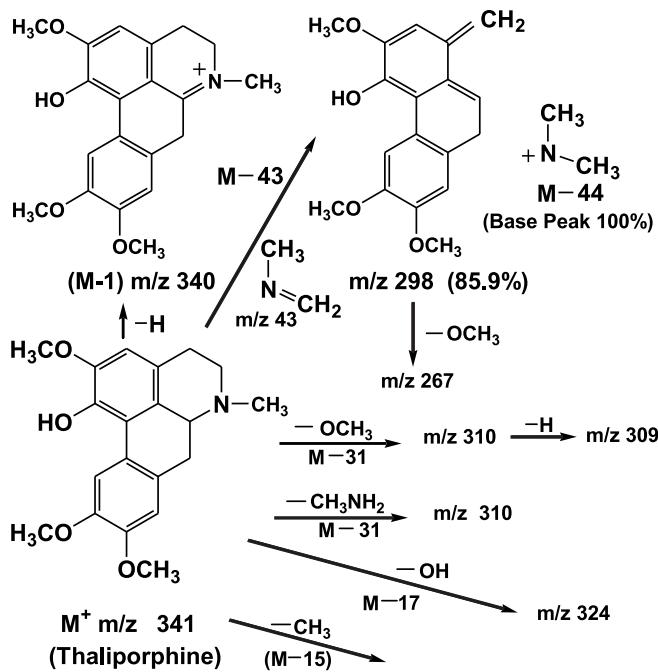


Figure 4. Mass spectral fragmentation of Thaliporphine

Acknowledgment

The authors are grateful to Prof. Dr. Iqbal Choudhary of HEJ Research Institute of Chemistry, University of Karachi for NMR and Mass spectra.

REFERENCES

1. Ahrendt L.W.A.; Berberis and Mahonia: A taxonomic revision; *J. Linnean Soc.* , 57 (1961) 410.
2. Brazdovicoa B., Kostalova D., Tomko J., and Yang Jin Hwang; Isolation and identification of alkaloids from fruits of *Berberis thunbergii* DC.; *Chem. Zvesti*, 34 (1980) 259-262.
3. Cabezas N. J., Urzua A. M., Niemeyer H. M.; Translocation of isoquinoline alkaloids to the hemiparasite, *Tristerix verticillatus* from its host, *Berberis montana*; *Biochem. System. Ecol.*, 37 (2009) 225–227.
4. Hasanuzzaman S. M., Guide on Medicinal and aromatic plants of SAARC countries, SAARC Agricultural Information Center CSAIC, First edition, 2006.
5. Punitha I. S. R., Shirwaikar A., and Shirwaikar A.; Antidiabetic activity of

benzyltetraisoquinoline alkaloid berberine in streptozotocin nicotinamide induced diabetic rats, *Diabetol Croat*, 25 (2006) 30-34.

6. Chand N., Durrani F. R., Qureshi M. S. and Durrani Z., Role of *Berberis lycium* in Reducing Serum Cholesterol in Broilers; *Asian-Aust. J. Anim. Sci.* 20 (2007) 563 - 568.
7. Sood P., Modgil R. and Sood M., *Berberis lycium* a Medicinal Plant with Immense Value; *Indian J. Pharm. Biol Res.*, 1 (2012) 1.
8. Miana G. A., Ikram M. and Warsi S. A., Spectral studies on alkaloids Part III - The identification of berbenine as berbamine. *Pakistan J. Sci. Ind. Res.*, 12, (1969) 159.
9. Miana G. A., Ikram M. and Holubek J. ; Spectral studies on alkaloids Part IV.—The Identification of Berbericinine Hydroiodide as Palmatine Iodide;. *Pakistan J. Sci. Ind. Res.*, 12, (1970) 309.
10. Leet J. E., Elango V., Hussain S. F. and Shamma M.; "Chenabine and Jhelumine: Secobisbenzylisoquinoline or Simple Isoquinoline-bisbenzylisoquinoline Dimers?" *Heterocycles*, 20 (1983) 425.
11. Yusupov M. M., Karimov A., Shakirov R., Grovi P.G., Faskhutdinov M. F., Levkovich M.G. and Abdullaev N. D.; Berberis alkaloids. XXVI. An investigation of the alkaloids of *Berberis amurensis*; *Chem. Nat. Comp.*, 29 (1993) 338-340.
12. Shamma M., Lin H. Y., Freyer A. J., Leet J. E., Urzua A. and Fajardo V., Chiloenamine and chiloenine: two unusual isoquinoline derived alkaloids. A new insight into the catabolism of aporphines; *J. Chem. Soc., Chem. Commun.*, (1983) 799-800.
13. Karimov A., Levkovich M.G., Abdullaev N.D., Shakirov R.; Berberis alkaloids. XXIII. Structure of turcberine; *Chem. Nat. Compd.*, 29 (1993) 63-67.
14. Khamidov I. I., Aripova S. F., Telezhenetskaya M. V., Karimov A., and Dzhenberov I.; *Berberis* alkaloids XXXIX. New alkaloids from *B. densiflora*; *Chem. Nat. Compd.*, 33 (1997) 323-325.
15. Karimov A., Meliboev S., Olimov V., Shakirov R.; Berberis Alkaloids XXX, Dynamics of the accumulation of the alkaloids of *Berberis integerrima* and *B. nummularia*; *Chem. Nat. Compd.*, 29 (1993) 412-413.
16. M. M. Yusupov, A. Karimov, M. G. Levkovich, N. D. Abdullaev and R. Shakirov; Berberis alkaloids. XVII. Investigation of the alkaloids of *Berberis heteropoda*; , January 1993, Volume 29, Issue 1, pp 43-48
17. I. Khamidov, M. Faskhutdinov, M. V. Telezhenetskay and R. Sh. Shakirov; Berberis alkaloids. XXXIV. Turcomanine — a new alkaloid from *Berberis turcomanica*; *Chemistry of Natural Compounds*, 32(1), 59-61 (1996)
18. Khamidov I. I. , Tashkhodzhaev B., Aripova S. F., Telezhenetskaya M. V., Karimov A.; *Berberis* alkaloids. XXXVII. Investigation of the alkaloids of *B. oblongata* and *B. integerrima*., *Chem. Nat. Compd.*; 32 (1996) 876.
19. Karimov A. and Shakirov R.; Berberis alkaloids. XX. Inestigation of the alkaloids of *Berberis iliensis*; *Chem. Nat. Compd.*, 29 (1993) 69-70.
20. Faskhutdinov M. F., Karimov A., Levkovich M. G., Abdullaev N. D., Shakirov R. ; Berberis Alkaloids XXXV-The structure of Nummularine; *Chem. Nat. Compd.*. 33 (1997) 70-72.
21. Tsang-Hsiung, Sheng-The Lu; Studies on the Alkaloids of Berberidaceous Plants. XXVI-Alkaloids of *Berberis mingensensis*; *Yakugaku Zasshi*,
22. Brazdovicoa B., Kostalova D., Tomko J., and Yang Jin Hwang; Isolation and identification of alkaloids from fruits of *Berberis thunbergii* DC.; *Chem. Zvesti*, 34 (1980) 259-262.
23. Tsang-Hsiung Y.: Studies on the Alkaloids of Berberidaceous Plants. XXVIII; Alkaloids of *Berberis morrisonensis*; *Yakugaku Zasshi*, 80 (1960) 1302.
24. B. Brazdovicova, D. Kostalova, J. Slavik, and J. Tomko, Alkaloids of *Berberis julianae*; *Chem. zvesti* 29 (2) 265-268 (1976)
25. Manosalva L., Mutis A., Diaz J., Urzua A., V. Fajardo and Quiroz A.; Identification of isoquinoline alkaloids from *Berberis microphylla* by HPLC ESI-MS/MS; *Bol. Latinoam. Caribe*

Plant. Med. 13 (2014) 324 – 335.

26. A. Karimov, M. F. Faskhutdinov, N. D. Abdullaev, M. G. Levkovich, E. G. Mil'grom; Ya V. Rashkes and R. Shakirov; *Berberis* alkaloids XXXII. Berberal — A new alkaloid from *Berberis heterobotrys*; , November 1993, Volume 29, 774–777

27. Karimov A., Telezhenetskaya M.V., Lutfullin K.L. and Yunusov S. Yu., Alkaloids of *Berberis integerrima*; *Chem. Nat. Compd.*, 14 (1978) 360.

28. S. F. ussain, M. T. Siddiqui, L. Khan., A. J. Freyer, H. Guinaudeau and M. Shamma.; Bebamine-2 – α -N-oxide, A New Bisbenzylisoquinoline Alkaloid from *Berberis brandisiana*; *J. Nat. Prod.*, 49 (1986) 538-9.

29. Karimov A., Vinogradova V. I., Shakirov R.; Berberis alkaloids. XXII. Interbrinine and interbrimine — New alkaloids from *Berberis integerrima*; *Chem. Nat. Compd.*, 29 (1993) 57–60.

30. Kupeli E., Kosar M., Yesilaka E., Husnu K. and Baser C; A comparative study on the anti-inflammatory, antinociceptive and antipyretic effects of isoquinoline alkaloids from the roots of Turkish *Berberis* species; *Life Sci.*, 72 (2002), 645-657.

31. Ross S. A., Gozler, T., Freyer A. J., Shamma M. and Bayhan C; Corydinemethine: A New Phenanthrene Alkaloid from *Berberis cretica*; *J. Nat. Prod.*, 49 (1986) 159-62.

32. Karimov A., Telezhenetskaya M.V., Lutfullin K.L. and Yunusov S. Yu., Alkaloids of *Berberis integerrima*; *Chem. Nat. Compd.*, 14 (1978) 360.

33. Tsang-Hsiung Y. and Lu S.; Alkaloids of *Berberis kawakamii* and *Berberis mingensis*, *Japanes Pharm Soc.* 80 (1960) 847–849.

34. A. Karimov, Berberis Alkaloids; *Chem. Nat. Products*; 29, 415(1993); M. Tomita and T. Kugo, *Yakugaku Zasshi*, 79, 317 (1959); C.A., 53, 17161.

35. Darina Muthna, Jana Cmielova, Pavel Tomsik and Martina Rezacova; *Natural Products Communications*, 8(12):1797-800. December 2013

36. Sheu-Meei Yu, Shoei-Sheng Lee, Hwa Chou, Che-Ming Teng; *European Journal of Pharmacology*, Volume 234, Issue 1, 30 March 1993, Pages 121-123

37. Gunng-Shinng, Kuo-Feng Huang, Chien-Chu Huang and Jia-Yi Wang; *Biomed Res. Int.* 2015; 2015: 729831.

38. Wei-Luen Chang, , Shoei-Sheng Lee & Ming-Jai Su1; *Journal of Biomedical Science* (2005) 12:611–619

39. Riggs N. V., Antonaccio L. and Marion Leo; A new quaternary Aporphine from *Fagara tinguassooiba* Hoehne; *Can. J. Chem.*, 39 (1964) 1330.

40. Shamma M. and Slusarchyk W. A.; The problem of the 1,2,9,10-tetraoxxygenated aporphines and the structure of the quaternary aporphine from *Fagara tinguassooiba*; *Tetrahedron*, 23 (1967) 2563-2570.

41. Shamma M., Shine R. J., Dudock B. S., Thalictrum alkaloids—IV: Three new alkaloids from *Thalictrum fendleri*: Thalidezine, thaliporphine, and preocateine; *Tetrahedron*, 23 (1967), 2887-2892.