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ABSTRACT:
The kinetics of photolysis of ascorbic acid in aqueous solution on UV irradiation has been studied in the
pH range 1–11 and the apparent first–order rate constants for the degradation reactions have been determined.
The k–pH profile for the photolysis in the acid range is represented by a sigmoid curve indicating the
gradual ionization of the molecule (AH2) to ascorbyl anion (AH–). Ascorbic acid shows maximum stability
around pH 5–6 due to the lowest rate of oxidation reduction of the mono–anion form. The rate of photolysis
is increased up to sevenfold at pH 10.0, compared to that at pH 5.0, due to an increase in the redox potentials
with pH leading to faster oxidation of the anionic species to dehydroascorbic acid in the alkaline range.
The rate is very slow in the pH range 1–2 due to the existence of the non–ionized form. The apparent
first–order rate constants for the photolysis of ascorbic acid at pH 1–11 range from 0.057–3.948×10–2 min–1.
A scheme for the sequence of reactions involved in the photolysis of ascorbic acid is presented.
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INTRODUCTION:
Ascorbic acid (AH2)(1) (Fig. 1) is an essential
micronutrient and performs important metabolic
functions in humans1-5. It is sensitive to air and
light6-8and is degraded by chemical or Photooxidation.
The stability of ascorbic acid has been studied in
total parenteral nutrition (TPN) solutions9-17, infusion
solutions18-42, plant material43,44, biological
fluids45-48and milk49-51. Attempts have been made to
stabilize ascorbic acid by the use of various agents
in aqueous solutions52-55, vitamin preparations56-60,
cosmetic preparations61-66, food products63, 67, and 68

and by chemical derivatization69, 70.An important
consideration in the stability of AH2 in TPN solutions
is the generation of hydrogen peroxide in the
presence of light71-75. This may result from the
oxidation of ascorbyl anion by molecular
oxygen76-80and may further be involved in the
degradation of AH2

81-83. The kinetics and mechanism
of oxidation reactions of AH2 have been studied by
several workers44, 52, 77, 79, 84-95.

Fig. 1.
Chemical structures of ascorbic acid (1),

dehydroascorbic acid (2) and 2,
3-diketogulonic acid (3).
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AH2 is a well-known antioxidant and acts as an
inhibitor of Photooxidation of a number of drugs
and biological compounds by quenching the singlet
oxygen96-110. The singlet oxygen (1O2) is highly
reactive, electrophilic and non-radical specie. It can
be produced from triplet oxygen (3O2) by
photosensitization in the presence of light111. The
oxidation reactions mediated by 1O2 are very rapid
due to the low activation energy required and the
reaction rates are much greater than those causes by
3O2

112. AH2also plays an important role in inhibiting
the photosensitization processes and thus protects
the substrates from degradation80, 113-117.In view of
the biochemical importance, photosensitivity and
extensive use of AH2 in liquid vitamin preparations
/ TPN solutions7 and its high susceptibility to
oxidation, the present work has been undertaken to
study the photolysis of the vitamin over a wide range
of pH and to determine the rate–pH profile to
ascertain the range of optimum stability for liquid
preparations. The k–pH profiles for the photolysis
of cyanocobalamin118-120, riboflavin121,122, folic
acid123,AH2 in the presence of nicotinamide124 and
for the hydrolysis of 7,8-dimethy 1,10-
(formylmethyl) isoalloxazine (major intermediate
in the photolysis of riboflavin)125 have been reported.
The object of this work is to conduct a detailed study
of the photolysis of AH2 in a wide pH range on UV
irradiation, identification of the photoproducts
formed, and determination of the rate constants,
study of rate–pH profile and proposal of a mode of
AH2 photodegradation reactions.

MATERIALS AND METHODS:
AH2 and dehydroascorbic acid (DHA) (2) (Fig. 1)
were obtained from Sigma Chemical Co. 2, 3-
diketogulonic acid (DKA) (3) (Fig. 1) was prepared
by the method of Homann and Gaffron76. All reagents
and solvents were of the purest form available from
BDH/Merck. The following buffer systems were
used throughout the study:

KCI–HCI, pH 1.0–2.0;
Citric acid–Na2HPO4, pH 2.5–8.0;
Na2B4O7–HCI, pH 8.5–9.0;
Na2B4O7–NaOH, pH 9.5–10.5;

Na2HPO4–NaOH, pH 11.0;
The ionic strength was 0.002 M in each case.

Photolysis:
A10–4 M aqueous solution of AH2 (200 ml) at an
appropriate pH, contained in a 250 ml beaker (Pyrex),
was placed in a water bath maintained at 251°C and
irradiated with a Philips 15 W TUV tube (51.3%
emission at 265nm, absorption maxima of AH2 at pH
4–11) fixed horizontally at a distance of 25 cm from
the center of the beaker. The solution was in free
equilibrium with air and samples were withdrawn at
appropriate intervals for thin-layer chromatographic
examination and spectrometric assay.

Thin-Layer Chromatography (TLC):
The photolyzed solutions of AH2 were subjected to
TLC using 250-ìm silica gel GF254 plates using the
following solvent systems:
A) Acetic acid–acetone–methanol–benzene

(5:5:20:70, v/v/v/v)126;
B) Ethanol–10% acetic acid (90:10, v/v)127;
C) A c e t o n i t r i l e – b u t y l  n i t r i l e – w a t e r

(66:32:2,v/v/v)128.
The spots were detected under UV light (254 nm)
(AH2) or by spraying with a 3% aqueous phenyl
hydrazine hydrochloride solution (DHA, DKA).

Spectral Measurements:
All spectral measurements on freshly prepared AH2

and the photolyzed solutions were carried out on a
Shimadzu UV-240 spectrometer using quartz cells
of 10mm pathlength.

Light Intensity Measurements:
The intensity of the Philips 15 W TUV tube was
determined by potassium ferrioxalate actinometry129

as 3.100.16×1016
 quanta s–1.

Assay Method
A 5ml aliquot of the photolyzed solution was placed
in a 20 ml beaker and the pH was adjusted to 2.0
with 0.1–1.0 M HCI or NaOH solution. The solution
was quantitatively transferred to a 10 ml volumetric
flask and made up to volume with 0.2 M KCI–HCI
buffers (pH 2.0). The absorbance of the solution
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was measured at the maximum at 243 nm and the
concentration of AH2 was determined using 9980
M–1 cm–1 as the value of molar absorptivity at the
analytical wavelength.

RESULTS AND DISCUSSION:
Photoproducts of Ascorbic Acid
The photolysis of AH2 in aqueous solution leads to
the formation of degradation products which have
been identified by TLC using solvent systems A, B
and C. The following products were identified on
comparison of their Rf values and spot color with
those of the authentic compounds.
pH 1–8:  DHA
pH 8–11:  DHA, and DKA.
DHA is obtained by the Photooxidation of AH2 and
DKA by the hydrolysis of DHA. The formation of
these products has been observed in the
photooxidation76, 130,131, chemical oxidation132-138, and
biotransformation138, 139-142 of AH2. In the presence
of light, DHA is converted to the hydrated bi-cyclic
hemiketal form at pH 2143. Ascorbate free radicals
have been detected in the transition metal-dependent
oxidation of AH2 by ESR144.

Assay of AH2

AH2 exhibits absorption maxima at 243 nm (pH 2)
and 265 nm(pH 4–10)7, 8,145.Spectrometric methods
have been used for the assay of AH2 in aqueous
solutions at 244 nm (pH ~2)85, 245 nm(pH 3.5)52,
265 (pH 7)146, 275 nm (pH 4.1 and 7.0)147, 265 nm
(pH 7)148, 245 nm (pH ~2)149, and 265 nm (pH ~7)48.
DHA and DKA do not significantly absorb in this
region150-152 and, therefore, do not interfere with the
assay of AH2 in photolyzed solutions.

In the present study, the photolysis reactions of AH2

have been carried out at 10–4 M concentration and
the assays have been performed at 243 nm after
suitable dilution of thedegraded solutions
(2.0–5.0×10–5 M)  at  pH 2.0 (0.2 KCI–HCI buffer).
The validity of Beer’s law relation in the
concentration range used was confirmed prior to the
assay. The calibration data for AH2 at the analytical
wavelength are presented in Table 1. The correlation
coefficient (R2=0.999) indicates a good linear

relationship over the concentration range employed.
The value of molar absorptivity at 243 nm determined
from the slope of the calibration curve is in good
agreement with those reported by Davies et al.151

and Sweetman7. The method has been found
satisfactory for the assay of AH2 in degraded solutions
and has been applied to evaluate the kinetics of
photolysis reactions.

3.3.Spectral Characteristics of Photolyzed
Solutions
A typical set of absorption spectra of AH2 solution
photolyzed at pH 6.0 is shown in Fig. 2. There is a
gradual loss of absorbance at 265nm, with time, due
to oxidation of the molecule to DHA which does
not absorb in this region. Similar spectral changes
are observed on the photolysis of AH2 throughout
the pH range 1–11. However, the magnitude of these
changes varies with pH and the loss of absorbance
for a fixed interval of time increases with pH
indicating the increase in the rate of photolysis.

Table 1. Calibration data for ascorbic acid showing
linear regression analysis (n = 5)

Parameter

λmax

Concentration range (M × 10–5)

Slope

SE of slope

Intercept

Correlation coefficient (R2)

Value

243 nm

2.0–8.0

9980

1.502

0.002

0.9999

Fig. 2. Spectral changes during the photolysis of
8×10–5 M ascorbic acid at pH 6.0. Irradiation time:
0 to 360 min.



Redox and Acid–Based Equilibria of AH2
The redox and acid-based equilibria of AH2

91 are
shown in Fig. 3.It is evident that a number of ionic
and non-ionic species, depending upon the pH of
the medium, are involved in the oxidation–reduction
of AH2 and may play an important role in the
photolysis of the molecule. A reaction scheme
showing the participation of some of these species
in the photolysis of AH2 is presented later.

Rate–pH Profile of AH2

The philosophy and types of kinetic pH profiles have
been discussed by Carstensen153. The major goals of
a pH profile are to determine the optimal pH range
and to select the best buffer system for a liquid
formulation. Several workers have studied the rate–pH
profiles of the oxidation of AH2 in the pH range 2–722,

52, and 77,154–157; however, the kinetics of Photooxidation
of AH2 in aqueous solution has not been reported. In
view of the sensitivity of AH2 to oxidation, it is
necessary to study the photochemical behavior of the
vitamin in aqueous solutions to determine the pH
range of optimum stability.

The chemical oxidation of AH2 in aqueous solution
is pHdependent and proceeds by a first-order reaction51,

75,121. The maximum rate of oxidation has been
observed at pH 4 near the pKa1 (4.1)7ofAH2 and the
minimum rate at pH 5–6 in the acid      region22, 156–159.
In this region, the molecule exists mostly in the mono-
anion form and the delocalization of the electrons
renders it relatively stable towards redox reactions55.

The oxidation of AH2 involves mainly the participation
of ionized form and the rate of oxidation varies linearly
with the concentration of the mono-anionic species77.
The oxidation steps of AH2 reaction have been studied
by voltcoulmetry160.

The k–pH profile for the photolysis of AH2 at pH
1–11 is shown in Fig. 4 and the rates are reported in
Table 2. The reaction in the pH range 1–6 is
represented by a sigmoid curve indicating the gradual
ionization of the molecule (pKa1 4.1)7 with pH and
the reactions of the fractions of un-dissociated AH2

and monohydrate ascorbate anion (AH–) present in
the pH range. Thus the AH– species appears to be
more susceptible to Photooxidation than the AH2

molecule. The behavior of AH2  on Photooxidation
in the acid region is similar to that observed for the
chemical oxidation of AH2 by molecular oxygen22

and involves the interaction of AH2 with singlet
oxygen. The AH–species (predominant in the pH
range 4.2–7.0, 55.7–99.9%) is more reactive
towardssinglet oxygen than its protonated form, the
AH2 molecule, as suggested by Bisby et al.105 and,
therefore, the rate of Photooxidation is higher in the
pH range above pH 4.1 corresponding to the pKa1 of
AH2. A seven-fold increase in the rate at pH 10.0
compared to that at pH 5.0 has been observed. The
gradual further increase in the rate of Photooxidation
in the pH range 7–10 is consistent with existence of
AH– species in the solution. Above pH 10, the rate
of Photooxidation slows down due to gradual
deprotonation of AH–species to give A2–(DHA) species
(pKa2 11.6) which does not appear to undergo any
photochemical change. Below pH 2, the rate of
oxidation is very slow due to the existence of the
molecule in the un-dissociated form (99.9%, pH 1.0).
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Fig. 3. Redox and acid-based equilibria of
ascorbic acid.

Fig. 4.k–pH profile for the photolysis of ascorbic
acid in aqueous solution.



The Photooxidation of AH2 is also influenced by its
redox potentials which vary with ph. The greater
photo stability of AH2 at pH 5–6, compared to that
at pH 10, is due to its lower rate of oxidation–reduction
in the acid range (E pH 5.0 = +0.127 V). The increase
in the rate of Photooxidation, with pH, is due to a
corresponding increase in the redox potentials (E pH
7.0 = +0.058 V)161 of AH2 which is similar to the
photolysis behavior of riboflavin at pH 5–6, compared
to that at pH 10.0121, 162. Since the ionization as well
as the redox potentials of AH2is function ofpH, the
rate of Photooxidation depends upon the species
present and its redox behavior at particular pH.

Primary Photochemical Reactions in the
Oxidation of AH2

Several schemes have been proposed for the chemical
and Photooxidation of AH2under different conditions.
A reaction scheme based on general photochemical
principles for the important reactions involved in
the Photooxidation of AH2 is presented below:

According to this reaction  scheme, the ground state
AH2 species (0AH2, 0AH) are excited to the lowest
singlet state (1AH2, 1AH) by the absorption of a
quantum of UV light [1,5]. These excited states may
directly be converted to photoproducts [2,6] or may
undergo intersystem crossing (isc) to form the excited
triplet states [3,7]. The excited triplet may then
degrade to photoproducts [4,8]. The triplet
monoascorbate ion (3AH) may react with the ground
state AH2 (0AH2) to form a monoascorbate anion
radical (AH–) and a monoascorbate radical (AHs)
[9]. The two AHs species may lead to one oxidized
and one reduced AH2 species [10]. AH2 triplet (3AH2)
may react with molecular oxygen (3O2) to yield
singlet oxygen (1O2) [11] which may be quenched
by the monoascorbate anion (AH–) to form the
excited triplet state (3AH2) [12] or by the monovalent
ascorbate radical to form an oxidized radical (AHOO)
[13]. The oxidized radical (AHOO) may react with
ground state 0AH2 to form the monoascorbate radical
(HA–) and AHOOH [14]. AHOOH may be converted
chemically to dehydroascorbic acid (A) and hydrogen
peroxide [15]. Hydrogen peroxide may again react
with the AH2 triplet to form the oxidized species
(A) [16].

CONCLUSION:
The photolysis of AH2 in aqueous solution at pH
1–11 by UV radiation may be represented by a
sigmoid curve. The main species involved in the
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Table 2. Apparent first-order rate constants for the
photolysis of ascorbic acid at pH 1.0–11.0

pH

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

8.5

9.0

9.5

10.0

10.5

11.0

k×102 (min–1)

0.057

0.085

0.155

0.345

0.534

0.755

0.917

1.049

1.300

1.671

2.929

3.765

3.920

3.948

R2

0.999

0.998

0.999

0.998

0.998

0.999

0.999

0.999

0.998

0.998

0.999

0.999

0.998

0.998
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photolysis is the monohydrogen ascorbate anion and
the optimum stability is exhibited in the pH range
5–6, the region most suitable for the formulation of
pharmaceutical preparations. The increase in the
rateof photolysis, with pH, is due to an increase in
the redox potentials of AH2 and the species involved.
The monohydrogen ascorbate anion of AH2 is much
more susceptible to photolysis than the non–ionized
molecule (pH 1–2) and the rate is slowed down in
the pH range 10–11 due to the gradual formation of
ascorbate anion. The photolysis of AH2 in the pH
range 1–11 is a function of the ionization and redox
potentials of AH2.
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